
CS 51 Code Review 4

Modules and Functors in OCaml

Sam Green and Gabbi Merz

Harvard University

Table of contents

1. Modules and Abstraction

2. Functors

3. Binary Heaps (for Ps4)

1

Modules and Abstraction

Modules

• A module is a collection of values (and remember, functions are

values) and types.

• A module signature or module type describes the contents of a

module.

• While not precisely true, this analogy may help:

type

value
∼=

signature

module

2

Modules

Here’s a definition of the Math module:

module Math =

struct

let pi = 3.14159

let cos = cos

let sin = sin

let sum = (+.)

let max (lst : float list) =

match lst with

| [] -> None

| hd :: tl -> Some (List.fold_right max tl hd)

end ;;

Important syntax here: module, struct, end. What are these for? Are

they analogous to other syntax we’ve seen so far?

3

Module Signatures

The type analog for modules is the module signature. For example:

module type TF =

sig

type info

val info : info

val hometown : string

val print_info : unit -> unit

val grade_assignment : int -> string

val favorite_function : float -> float -> float

val fold : int list -> int -> int

end ;;

We could then apply this signature to the Sam or Gabbi module.

(Remember, files are module by default!)

module TFGabbi = Gabbi : TF ;;

4

A BigNum Module.

What happened when you typed #mod use ‘‘ps3.ml’’ into utop while

you were working on problem set 3?

Something like this (output omitted for space):

module Ps3 :

sig

type bignum = { neg : bool; coeffs : int list; }

val base : int

val negate : bignum -> bignum

val equal : bignum -> bignum -> bool

...

(Notice that Ps3 has an anonymous module signature applied to it! This

signature is the default, which exposes every defined type and values. It’s

inferred automatically by the compiler!)

What are some undesirable design properties of this default?

5

Exercise: A BigNum Module Signature

The solution to these problems is to write a module signature and use it

to enforce an abstraction barrier between client code and the Ps3 module.

Let’s imagine that the only values we wanted to include were toInt,

fromInt, plus, negate, and times. What would the signature be?

How would we create a BigNum module out of this signature and the Ps3

module?

6

Functors

Functor: Definition and Purpose

Informally, a functor is a “function” from modules to modules. More

precisely, a functor is a module that is parameterized by another module.

Some possible uses:

• Enforce abstractions.

• Make code more generic.

• Make code more extensible.

7

Functor: Motivation

Imagine we needed a stack data structure as part of a system we were

building. What’s the “simplest” way to use the following signature for

stacks with elements of several different types?

module type STACK =

sig

exception Empty

type element

type stack

val empty : unit -> stack

val push : element -> stack -> stack

val top : stack -> element

val pop : stack -> stack

val serialize : stack -> string

end ;;

8

Functor: Example

module type SERIALIZE =

sig

type t

val serialize : t -> string

end ;;

module MakeStack (Element: SERIALIZE)

: (STACK with type element = Element.t) =

struct

type element = Element.t ;;

...

end ;;

9

Exercise: Functors

Create a module to handle stacks of (int, int) values.

10

Functors: Toy Example1

Imagine we have a module that implements this signature:

module type X_int =

sig

val x : int

end ;;

How can we write a functor that takes a module of type X int and

create a new module of type X int with the value x incremented?

1Thanks to Niamh Mulholland!

11

Binary Heaps (for Ps4)

Why Binary Heaps?

The conceptual idea for this week’s problem set is about modules and

functors. It’s also the first foray into a real abstraction.

The motivating problem is a priority queue. The implementation

progression is:

1. List based.

2. Binary search tree based.

3. Binary heap based.

The binary heap implementation allows for O(log n) operations that

could be worst case O(n) in other implementations.

12

Binary Heap: Definition

A binary (min)heap is a binary search tree that satisfies additional

representation invariants.2

The first is an ordering invariant:

The value stored at the root of any subtree (including the root of the

whole tree) must be smaller than all values stored in the subtrees below

the root.

The second is a balance invariant:

For any node, its left child tree is either the same size as (in number of

nodes) or exactly one node larger than its right child tree.

2Recall the definition of representation invariant!

13

Heap Operations

The biggest challenge in implementing the binary heap is understanding

the rules for inserting and popping so that these invariants are enforced.

So let’s this sequence of operations to get comfortable:

1. Insert 10.

2. Insert 6.

3. Insert 6.

4. Insert 5.

5. Insert 11.

6. Insert 1.

7. Take.

14

Insert 10

1. Insert 10. 10

15

Insert 6 for Balance

1. Insert 10.

2. Insert 6.

10

6

16

Fix for Order

1. Insert 10.

2. Insert 6.

10

6

(a) Unfixed.

6

10

(b) Fixed.

17

Add another 6

1. Insert 10.

2. Insert 6.

3. Insert 6.

6

10 6

No fix required.

18

Add a 5

1. Insert 10.

2. Insert 6.

3. Insert 6.

4. Insert 5.

6

10

5

6

(a) Add 5 here for

balance.

6

5

10

6

(b) 5 bubbles up.

5

6

10

6

(c) 5 bubbles up again.
19

Add an 11

1. Insert 10.

2. Insert 6.

3. Insert 6.

4. Insert 5.

5. Insert 11.

5

6

10

6

11

Add 11 here for balance, no fix required.

20

Add a 1

1. Insert 10.

2. Insert 6.

3. Insert 6.

4. Insert 5.

5. Insert 11.

6. Insert 1.

5

6

10 1

6

11

(a) Add 1 here for

balance.

5

1

10 6

6

11

(b) Swap 1 and 6 for

ordering

1

5

10 6

6

11

(c) Swap 1 and 5 for

ordering 21

Take the Lowest Element.

1. Insert 10.

2. Insert 6.

3. Insert 6.

4. Insert 5.

5. Insert 11.

6. Insert 1.

7. Take.

1

5

10 6

6

11

(a) Starting tree.

5

10 6

6

11

(b) Remove root.

5

10 6

6

11

(c) Use balance to

identify element to move.

6

5

10

6

11

(d) Move this element to

the top, then fix.
22

Takeaways

1. Understand the invariants.

2. Enforce the invariants separately.

3. Identify the recursive structure. Note that invariant properties apply

to subtrees! (Hint.)

4. Draw pictures.

5. (Try not to code until you understand the data structure)

23

Questions?

Remember to fill out the form!

http://sa.muel.green/cs51

23

http://sa.muel.green/cs51

	Modules and Abstraction
	Functors
	Binary Heaps (for Ps4)

