
CS 51
CODE REVIEW 3

SAMUEL GREEN AND GABBI MERZ

Contents

1. Invariants 1
2. Modeling Choices 2
3. Concise and Field Punning: valid_date 3
4. Abstraction: count_people and the Listmodule. 4
5. Nested Recursion: find_parents 5
6. Problem Set 3: Tips ‘n‘ Tricks 6

Note that there are no new syntax here – we’re just putting previous concepts
and syntax together and thinking about modeling tradeoffs and other abstract
concepts!

1. Invariants

Definition 1. An invariant is a condition that is assumed to true of any value of a
particular type, but that is not necessarily enforced by the compiler.

Lab 3 and Problem Set 3 focus significantly on the design and enforcement of
invariants as a useful mechanism for programming in OCaml.

What was the invariant of the RGB variant of the color type in Lab 3?
Did the choice of the type help us enforce the invariant? What burden does this

place on us as programmers? Could a different type definition have helped? Does
the inclusion of color_label help for any specific reason?

Date: February 20, 2017.
1

2 SAMUEL GREEN AND GABBI MERZ

2. Modeling Choices

Because we have to autograde the labs and problem sets, there doesn’t end up
being a lot of space to exercise your modeling muscles when it comes to repre-
senting data in OCaml. Did you agree with the modeling choices we made in the
lab?

Consider for example the following type for color:

type color_label = Orange | Brown | Green ;;

type color_label = Orange | Brown | Green

type color = Simple of color_label | RGB of int * int * int ;;

type color = Simple of color_label | RGB of int * int * int

Why did choose this definition, particularly of RGB? What do you think of this
redefinition?

type rgb = { r : int ; g : int ; b : int } ;;

type rgb = { r : int; g : int; b : int; }

type color = { simple : color_label option; rgb : rgb option } ;;

type color = { simple : color_label option; rgb : rgb option; }

Is this example better or worse? Is there something better or worse? Is there
an example that’s similarly “good” to the first version but that uses a record type
instead?

3

3. Concise and Field Punning: valid_date

Here’s a long version of the valid_date function. What do you think of its
design and style?

let valid_date (d : date) : date =

if d.year <= 0 then raise (Invalid_Date "only positive years") else

if d.month = 1 || d.month = 3 || d.month = 5 || d.month = 7 || d.month = 8 ||

d.month = 10 || d.month = 12 then

(if d.day > 31 then raise (Invalid_Date "too many days") else

if d.day < 1 then raise (Invalid_Date "days must be >1") else

d) else

if d.month = 4 || d.month = 6 || d.month = 9 || d.month = 11 then

(if d.day > 30 then raise (Invalid_Date "too many days") else

if d.day < 1 then raise (Invalid_Date "days must be >1") else

d) else

if d.month = 2 then

(if d.year mod 4 = 0 && d.year mod 100 <> 0 || d.year mod 400 = 0 then

if d.day > 29 then raise (Invalid_Date "too many days") else

if d.day < 1 then raise (Invalid_Date "days must be >1") else

d

else

if d.day > 28 then raise (Invalid_Date "too many days") else

if d.day < 1 then raise (Invalid_Date "days must be >1") else

d) else

raise (Invalid_Date "bad month") ;;

What are some first observations about this code, perhaps some easy simplifi-
cations that could be made?

4 SAMUEL GREEN AND GABBI MERZ

4. Abstraction: count_people and the List module.

Recall the family tree modeling problem from the Lab. (Aside: did you like the
model? Did you agree with the type definitions?)

Here’s a definition of the function count_people from the lab:

let rec count_people (fam : family) : int =

match fam with

| Single _ -> 1

| Family (_, _, fl) -> 2 + count_people fl ;;

Great. Right? (What’s the error here?)
How can we improve this implementation?

5

5. Nested Recursion: find_parents

Recall the definition of the find_parents function from the lab. What’s a good
strategy for writing a complicated function like this?

let find_parents (fam : family) (n : string) : (person * person) option =

What are the challenges? What tools do we have to work on that?

6 SAMUEL GREEN AND GABBI MERZ

6. Problem Set 3: Tips ‘n‘ Tricks

• Keep your eyes open for folding opportunities. They can appear where
you least expect them and make for very slick code!

• Built in operators are powerful, and OCaml knows a lot about how to
manipulate values. The Pervasives module has all of the secrets. For
example, do you know the type of the (=) function? How about other
comparators?
(=) ;;

- : ’a -> ’a -> bool = <fun>

• Make conscious choices about what method of record field accessing you
use. Using the “easiest” can make your code much more complicated than
necessary!

• Be deliberate about understanding the times function and the algorithm
before you start to code: the code will only get in the way.

• Appropriately scope helper functions. If you write a helper function that is
only ever called within one other function it should be scoped as such.

• Make sure to read and understand the style guide.

	1. Invariants
	2. Modeling Choices
	3. Concise and Field Punning: valid_date
	4. Abstraction: count_people and the List module.
	5. Nested Recursion: find_parents
	6. Problem Set 3: Tips `n` Tricks

