
CS 51
CODE REVIEW 1

SAMUEL GREEN AND GABBI MERZ

1. Philosophy

There is more than one way to solve a problem.
Some ways are better than others.

2. Important Terminology

A value is the unit of reasoning in a functional programming language. value

A type is the abstract analog of a value. Every value in OCaml has exactly 1 type. type

Primitive data types refer to the smallest, most essential building blocks of a Primitive data types

programming language. By composing primitives, we build up a richer and richer
vocabulary with which to represent the world. Examples of primitives are int,
bool, float, and so on.

Compound types are compositions of multiple primitive types. Examples in- Compound types

clude functions, tuples, lists, among others.

A function is a special type of value. Abstractly, functions convert one value function

(an argument) into another value, a return value, possibly of a different type. argument

return value
OCaml has syntax for functions of multiple arguments, but it’s very helpful to think
of OCaml functions as always taking one value and returning another. Because
they are values, functions can be passed as arguments to other functions or can be
returned as return values by other functions.

An expression is a composition of some number of values and functions. expression

An Identifier is used to specify and keep track of a single value in OCaml. Prof. Identifier

Shieber also calls these variables, but I find it helpful to call them identifiers, variables

since identifiers themselves don’t contain or store anything: they are instead used
to identify, or name, values to which they are associated. For example, in the
expression

let x = 5;;

Date: February 10, 2017.
1

2 SAMUEL GREEN AND GABBI MERZ

The identifier is x, because it identifies the value 5.

Abstract syntax, and discussion of abstraction in general, refers to the ideas andAbstract syntax

concepts that we use to reason about problems and programs and that ultimately
inform how we write code. Understanding the abstract syntax you are working
with is at least as important, if not more important, than the concrete syntax. Ideas
about abstraction are definitely the most important in this course, particularly
because it’s not unfair to observe that OCaml is not a especially widespread.

Concrete Syntax refers to the nuts and bolts of a programming language: theConcrete Syntax

semicolons, spaces and tabs, and so forth. There’s a fair amount of concrete syntax
to keep track of in OCaml, but it will be much easier to keep everything clear if you
have a good grasp on the abstract ideas that are always present underneath.

A type constructor refers to the concrete syntax used to specify a type. Everytype constructor

type constructor necessarily has at least one corresponding value constructor,value constructor

which is the syntax used to create values of that type.
Scope refers to the “area” of a program from which the value associated with anScope

identifier can be reached.
Higher-order is used to describe functions that operate on other functions orHigher-order

produce other functions. To check that you are comfortable with this idea, convince
yourself that every function that takes multiple arguments in OCaml is technically
higher order.

An anonymous value (or more typically, an anonymous function) is a value thatanonymous

is never associated with an identifier. Examples are

5;;

fun y -> y;;

Each of these is a valid value in OCaml, despite never being bound to an identifier.
An identifier that starts with _) is also called anonymous.

More terminology next week.

3. Git Cheatsheet

Make sure that you’ve watched TF Brian Yu’s awesome video on Git.
There are 3 (important) states that a file can exist in: unstaged, staged, and

committed. If a file is unstaged, either it is not being tracked by Git, or it has been
changed since the last time it was committed but has not been marked for commit
yet. Files that are staged have changed since the last time they were committed,
but haven’t been committed yet. Staged files are “snapshotted” when they’re
committed, at which point they move back to being unstaged once they are edited
again.

Key commands:

https://www.youtube.com/watch?v=YcenZfJrxvc&t=6s

CS 51 CODE REVIEW 1 3

(1) git add: Move a file from unstaged to stage.
(2) git commit <-a> <-m “message”>: Commit the files current in the stag-

ing area (i.e take a snapshot). The -a flag automatically adds files that have
been previously tracked into the staging area before committing. The -m
“message” flag associates a message with the commit; if you don’t include
it, you’ll be prompted to type one into a text editor pop-up.

(3) git push. Send your local changes to a remote repository (i.e. GitHub).
(4) git pull. Get changes from a remote repository.
(5) Many more – Google is your friend, and no one ever really knows every-

thing there is to know about Git.

4. General Advice

(1) Read through the whole lab, even if you don’t finish it. There will often by
wisdom and/or guidance and/or hints for your problem sets (i.e. on design
and style) in the comments. This is really worth your time.

(2) The type system is your friend. It’s tricky at the beginning, but learning to
rely on and love it will pay dividends. Thinking about and writing down
the types of functions you intend to write is a great first step.

(3) Don’t starting writing concrete syntax until you understand the abstract
problem. Writing symbols that are confusing to begin with will rarely make
things clearer.

(4) Keep your code organized, and be systematic in the way you write it.
Creating code that “looks” clear to read (uniform spacing, etc) is present
you’s way of helping future you make progress.

(5) The problem sets are not (only) about writing code. This comes back to the
abstract versus concrete syntax idea. None of the exercises in this course
is written with “it’s very important that students know how to build x
piece of software’ in mind. Rather, they are designed to teach underlying
concepts, and identifying those concepts will help you see the value of the
exercises. Don’t hesitate to ask if the connections are always clear.

https://xkcd.com/1597/
https://xkcd.com/1597/

4 SAMUEL GREEN AND GABBI MERZ

5. Exercises

Exercise 1. Write the type of the following value:

let myfun1 =

let greet y = "Hello " ^ y

in fun x -> string_of_float x ^ greet "World!";;

�

Exercise 2. Write the type of the following function, and say what it does:

let rec myfun2 = fun l ->

match l with

| [] -> [0]

| hd :: tl -> hd :: (myfun2 tl) ;;

�

Exercise 3. Write the type of the following value:

let myfun3 =

let greet y = "Hello " ^ y

in fun x -> let (z, y) = x in

string_of_float z ^ greet "World" ^ string_of_int y;;

�

Exercise 4. What’s the type of the function devious defined below?

let devious x : ??? =

match x with

| [] -> true

| [_y] -> false

| h :: n :: _tl -> (h *. n) < 0.0 ;;

�

Exercise 5. Annotate the type of the following function as it is applied to arguments one
at a time.

CS 51 CODE REVIEW 1 5

let myst q x z =

if q then float_of_int x +. z

else z ** float_of_int x ;;

�

Exercise 6. Define a function zip that converts two lists into a list of tuples.
�

Exercise 7. Using a fold, write a function that calculates the cumulative exponentiation
of a float list, using 1 as the initial value.

�

	1. Philosophy
	2. Important Terminology
	3. Git Cheatsheet
	4. General Advice
	5. Exercises

