## **Generalized Top Trading Cycles**

An Iterative Approach for Exchange Economies with Money

Samuel L. Green Advisor: Prof. David C. Parkes April 25, 2017

Harvard John A. Paulson School of Engineering and Applied Sciences

- 1. Background: Mechanism Design
- 2. Problem: Discrete Exchange Economies with Money
- 3. Solution: NetAscendingClock

## **Background: Mechanism Design**

"Economics is a social science concerned chiefly with description and analysis of production, distribution, and consumption of goods and services."

"**Computer Science** is... the feasibility, structure, expression, and mechanization of the **methodical procedures (or algorithms)** that underlie the **acquisition**, representation, processing, storage, communication of, and access to **information**."

- Intersection of Econ and CS.
- Design of incentive systems with:
  - Rational actors
  - Private information
  - A collective objective
- Famous examples:
  - Auctions
  - Voting systems
  - Lotteries

# Problem: Discrete Exchange Economies with Money

### An example: intermediated market



### Happier Example: No Broker



• This looks good! Trades happen directly.

#### Happier Example: No Broker



- This looks good! Trades happen directly.
- But, how did we get here?

- Indivisible (discrete) items.
- Initial ownership / endowments.
- Money (which is often not allowed).

Desirable properties:

• Truthful.

- Indivisible (discrete) items.
- Initial ownership / endowments.
- Money (which is often not allowed).

- Truthful.
- Efficient.

- Indivisible (discrete) items.
- Initial ownership / endowments.
- Money (which is often not allowed).

- Truthful.
- Efficient.
- Cost-free.

- Indivisible (discrete) items.
- Initial ownership / endowments.
- Money (which is often not allowed).

- Truthful.
- Efficient.
- Cost-free.
- Rational.

- Indivisible (discrete) items.
- Initial ownership / endowments.
- Money (which is often not allowed).

- Truthful.
- Efficient.
- Cost-free.
- Rational.
- Fair.

## Solution: NetAscendingClock

- Fully-specified agent valuations
- A dynamic auction environment.

• The prices of all items begin at 0.

- The prices of all items begin at 0.
- Given the prices, every person indicates what item or items they most prefer.

- The prices of all items begin at 0.
- Given the prices, every person indicates what item or items they most prefer.
- If a matching exists, the prices are set and the auction ends.

- The prices of all items begin at 0.
- Given the prices, every person indicates what item or items they most prefer.
- If a matching exists, the prices are set and the auction ends.
- Otherwise, raise prices on some items and continue.

- The prices of all items begin at 0.
- Given the prices, every person indicates what item or items they most prefer.
- If a matching exists, the prices are set and the auction ends.
- Otherwise, raise prices on some items and continue.

#### **Provisional Revenue Bidding**

The auction mechanism is extremely famous (in the field).

Now: allow every person to use the provisional revenue promised to them by current prices to place new bids.

#### **Convergence and Market Clearing**

Provided rules for price updating and and trade identification.

Proved that the auction mechanism converges to a well-defined **competitive equilibrium**.

Proved that the outcome is **exactly efficient**, **cost-free** for the operator, and **rational** for the participants.

Observed strategic intuition.

#### NetAscendingClock in Action



## Questions?